Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicon ; 234: 107309, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37802220

RESUMO

A facultative parasite called Aspergillus flavus contaminates several important food crops before and after harvest. In addition, the pathogen that causes aspergillosis infections in humans and animals is opportunistic. Aflatoxin, a secondary metabolite produced by Aspergillus flavus, is also carcinogenic and mutagenic, endangering human and animal health and affecting global food security. Peppermint essential oils and plant-derived natural products have recently shown promise in combating A. flavus infestations and aflatoxin contamination. This review discusses the antifungal and anti-aflatoxigenic properties of peppermint essential oils. It then discusses how peppermint essential oils affect the growth of A. flavus and the biosynthesis of aflatoxins. Several cause physical, chemical, or biochemical changes to the cell wall, cell membrane, mitochondria, and associated metabolic enzymes and genes. Finally, the prospects for using peppermint essential oils and natural plant-derived chemicals to develop novel antifungal agents and protect foods are highlighted. In addition to reducing the risk of aspergillosis infection, this review highlights the significant potential of plant-derived natural products and peppermint essential oils to protect food and feed from aflatoxin contamination and A. flavus infestation.


Assuntos
Aflatoxinas , Aspergilose , Óleos Voláteis , Humanos , Aspergillus flavus , Óleos Voláteis/farmacologia , Mentha piperita/metabolismo , Aflatoxinas/metabolismo , Antifúngicos/farmacologia , Antifúngicos/química , Aspergilose/tratamento farmacológico
2.
Biomol Biomed ; 23(4): 649-660, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-36762432

RESUMO

Taxifolin (TA) is a natural flavonoid found in many foods and medicinal plants with well-documented antioxidant and anti-inflammatory properties. Cyclophosphamide (CP) is an effective antineoplastic and immunosuppressive agent; however, it is associated with numerous adverse events, including hepatotoxicity. Herein, we aimed to investigate the potential protective effects of TA using a mouse model of CP-induced hepatotoxicity. Mice were co-treated with TA (25 and 50 mg/kg, orally) and CP (30 mg/kg, i.p.) for 10 consecutive days and sacrificed 24 hours later. CP induced increased transaminases (ALT and AST), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) paralleled with pronounced histopathological alterations in the liver. Moreover, hepatic tissues of CP-injected mice showed increased malondialdehyde (MDA), protein carbonyl, and nitric oxide (NO) levels, accompanied by decreased antioxidant defenses (glutathione [GSH], superoxide dismutase [SOD], and catalase [CAT]). Livers of CP-injected mice also showed increased inflammatory response (nuclear transcription factor kappa-B [NF-κB] p65 activation, increased levels of proinflammatory cytokines tumor necrosis factor alpha [TNF-α], interleukin 1 beta [IL-1ß], and IL-6) and apoptosis (decreased Bcl-2 and increased Bax and caspase-3 expression levels). Remarkably, TA ameliorated markers of liver injury and histological damage in CP-injected mice. TA treatment also attenuated numerous markers of oxidative stress, inflammation, and apoptosis in the liver of CP-injected mice. This was accompanied by increased nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) expression in the liver tissues of CP-injected mice. Taken together, this study indicates that TA may represent a promising new avenue to prevent/treat CP-induced hepatotoxicity and perhaps other liver diseases associated with oxidative stress and inflammation.


Assuntos
Antioxidantes , Doença Hepática Induzida por Substâncias e Drogas , Humanos , Antioxidantes/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Heme Oxigenase-1/metabolismo , Inflamação/tratamento farmacológico , Estresse Oxidativo , Ciclofosfamida/efeitos adversos , NF-kappa B/metabolismo , Apoptose , Glutationa/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico
3.
Life Sci ; 313: 121281, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36521549

RESUMO

Chlorpyrifos (CPF) is a widely used broad-spectrum pesticide with multi-organ toxic effects. Oxidative stress was found to play a role in the deleterious effects of CPF, including nephrotoxicity. This study investigated the protective effect of the antioxidant polyphenol rosmarinic acid (RA) against CPF-induced kidney injury, with an emphasis on oxidative injury, inflammation, SIRT1, and Nrf2/HO-1 signaling. Rats received 10 mg/kg CPF and 25, 50, and 100 mg/kg RA orally for 28 days, and the samples were collected for analysis. CPF increased serum urea and creatinine and kidney Kim-1 and caused several histopathological alterations. ROS, MDA, NO, NF-κB p65, TNF-α, and IL-1ß were elevated in the kidney of CPF-intoxicated rats. RA ameliorated kidney function markers, prevented tissue injury, suppressed ROS, MDA, and NO, and downregulated NF-κB p65, TNF-α, and IL-1ß in CPF-intoxicated rats in a dose-dependent manner. RA decreased Bax, caspase-3, oxidative DNA damage, and Keap1, boosted antioxidant enzymes and Bcl-2, and upregulated Nrf2, HO-1, and SIRT1 in CPF-administered rats. Molecular docking simulation revealed the binding affinity of RA toward NF-κB, Keap1, HO-1, and SIRT1. In conclusion, RA prevented CPF nephrotoxicity by attenuating oxidative stress, inflammation, and apoptosis and upregulating SIRT1 and Nrf2/HO-1 signaling.


Assuntos
Injúria Renal Aguda , Inflamação , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Sirtuína 1 , Animais , Ratos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Antioxidantes/metabolismo , Clorpirifos/toxicidade , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Rim/efeitos dos fármacos , Rim/patologia , Simulação de Acoplamento Molecular , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 1/efeitos dos fármacos , Sirtuína 1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Cinamatos/farmacologia , Cinamatos/uso terapêutico , Depsídeos/farmacologia , Depsídeos/uso terapêutico
4.
Front Genet ; 13: 1069068, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36568394

RESUMO

Due to iron's essential role in cellular metabolism, most organisms must maintain their homeostasis. In this regard, the fission yeast Schizosaccharomyces pombe (sp) uses two transcription factors to regulate intracellular iron levels: spFep1 under iron-rich conditions and spPhp4 under iron-deficient conditions, which are controlled by spGrx4. However, bioinformatics analysis to understand the role of the spGrx4/spFep1/spPhp4 axis in maintaining iron homeostasis in S. pombe is still lacking. Our study aimed to perform bioinformatics analysis on S. pombe proteins and their sequence homologs in Aspergillus flavus (af), Saccharomyces cerevisiae (sc), and Homo sapiens (hs) to understand the role of spGrx4, spFep1, and spPhp4 in maintaining iron homeostasis. The three genes' expression patterns were also examined at various iron concentrations. A multiple sequence alignment analysis of spGrx4 and its sequence homologs revealed a conserved cysteine residue in each PF00085 domain. Blast results showed that hsGLRX3 is most similar to spGrx4. In addition, spFep1 is most closely related in sequence to scDal80, whereas scHap4 is most similar to spFep1. We also found two highly conserved motifs in spFep1 and its sequence homologs that are significant for iron transport systems because they contain residues involved in iron homeostasis. The scHap4 is most similar to spPhp4. Using STRING to analyze protein-protein interactions, we found that spGrx4 interacts strongly with spPhp4 and spFep1. Furthermore, spGrx4, spPhp4, and spFep1 interact with spPhp2, spPhp3, and spPhp5, indicating that the three proteins play cooperative roles in iron homeostasis. At the highest level of Fe, spgrx4 had the highest expression, followed by spfep1, while spphp4 had the lowest expression; a contrast occurred at the lowest level of Fe, where spgrx4 expression remained constant. Our findings support the notion that organisms develop diverse strategies to maintain iron homeostasis.

5.
Biomolecules ; 12(11)2022 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-36358896

RESUMO

Oxidative stress and inflammation are key components in cardiovascular diseases and heart dysfunction. Herein, we evaluated the protective effects of (+)-taxifolin (TAX), a potent flavonoid with significant antioxidant and anti-inflammatory actions, on myocardial oxidative tissue injury, inflammation, and cell death, using a mouse model of isoproterenol (ISO)-induced acute myocardial injury. Mice were given TAX (25 and 50 mg/kg, orally) for 14 days before receiving two subsequent injections of ISO (100 mg/kg, s.c.) at an interval of 24 h on the 15th and 16th days. The ISO-induced cardiac tissue injury was evidenced by increased serum creatine kinase-MB (CK-MB), cardiac troponin I (cTnI), and lactate dehydrogenase (LDH), along with several histopathological changes. The ISO also induced increased malondialdehyde (MDA) with concomitant declined myocardial glutathione level and antioxidant enzymes activities. Moreover, ISO-induced heart injury was accompained with elevated cardiac NF-κB p65, TNF-α, IL-1ß, Bax, and caspase-3, as well as decreased Bcl-2, Nrf2, and HO-1. Remarkably, TAX reduced the severity of cardiac injury, oxidative stress, inflammation, and cell death, while enhancing antioxidants, Bcl-2, and Nrf2/HO-1 signaling in ISO-injected mice. In conclusion, TAX protects against ISO-induced acute myocardial injury via activating the Nrf2/HO-1 signaling pathway and attenuating the oxidative tissue injury and key regulators of inflammatory response and apoptosis. Thus, our findings imply that TAX may constitute a new cardioprotective therapy against acute MI, which undoubtedly deserves further exploration in upcoming human trials.


Assuntos
Traumatismos Cardíacos , Fator 2 Relacionado a NF-E2 , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Isoproterenol/toxicidade , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Estresse Oxidativo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
6.
Int J Mol Sci ; 23(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36293191

RESUMO

Despite its effectiveness in treating inflammatory diseases and various malignancies, methotrexate (MTX) is well known to cause hepatotoxicity, which involves increased oxidative stress and inflammation, limiting its clinical use. Herein, we looked into the effect of punicalagin (PU), a polyphenolic molecule having a variety of health-promoting attributes, on MTX-induced hepatotoxicity in mice. PU (25 and 50 mg/kg/day) was given orally to the mice for 10 days, while a single dose of MTX (20 mg/kg) was injected intraperitoneally (i.p.) at day 7. The MTX-induced liver damage was demonstrated by remarkably higher transaminases (ALT and AST), ALP, and LDH, as well as significant histological alterations in hepatic tissues. MTX-injected mice also demonstrated increases in hepatic oxidative stress markers, including malondialdehyde (MDA) and nitric oxide (NO), with a concordant drop in glutathione (GSH) content and superoxide dismutase (SOD) and catalase (CAT) activities. PU significantly attenuated the MTX-induced serum transaminases, ALP and LDH elevations, and hepatic oxidative stress measures and boosted antioxidant defenses in the liver. Moreover, the liver of MTX-treated mice showed increases in NF-κB p65 expression, pro-inflammatory cytokine (IL-6 and TNF-α) levels, and pro-apoptotic protein (caspase-3 and Bax) expression, whereas Bcl-2 and Nrf2 expressions were reduced, which were all attenuated by PU treatment. Collectively, PU inhibits oxidative damage, inflammation, and apoptosis and upregulates Nrf2 in the liver of MTX-induced mice. Thus, these findings suggest that PU may have great therapeutic potential for the prevention of MTX-induced hepatotoxicity, pending further exploration in upcoming studies.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Fator 2 Relacionado a NF-E2 , Camundongos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Metotrexato/toxicidade , Metotrexato/metabolismo , Caspase 3/metabolismo , Antioxidantes/farmacologia , Proteína X Associada a bcl-2/metabolismo , NF-kappa B/metabolismo , Catalase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Óxido Nítrico/metabolismo , Interleucina-6/metabolismo , Estresse Oxidativo , Inflamação/patologia , Fígado/metabolismo , Glutationa/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Morte Celular , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Superóxido Dismutase/metabolismo , Malondialdeído/metabolismo , Transaminases/metabolismo
7.
Metabolites ; 12(7)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35888772

RESUMO

Liver injury is among the adverse effects of the chemotherapeutic agent cyclophosphamide (CP). This study investigated the protective role of the flavone apigenin (API) against CP-induced liver damage, pointing to the involvement of Nrf2/HO-1 signaling. Rats were treated with API (20 and 40 mg/kg) for 15 days and received CP (150 mg/kg) on day 16. CP caused liver damage manifested by an elevation of transaminases, alkaline phosphatase (ALP), and lactate dehydrogenase (LDH), and histological alterations, including granular vacuolation, mononuclear cell infiltration, and hydropic changes. Hepatic reactive oxygen species (ROS), malondialdehyde (MDA), and nitric oxide (NO) were increased and glutathione (GSH) and antioxidant enzymes were decreased in CP-administered rats. CP upregulated the inflammatory markers NF-κB p65, TNF-α, IL-6, and iNOS, along with the pro-apoptotic Bax and caspase-3. Pre-treatment with API ameliorated circulating transaminases, ALP, and LDH, and prevented histopathological changes in CP-intoxicated rats. API suppressed ROS, MDA, NO, NF-κB p65, iNOS, inflammatory cytokines, oxidative DNA damage, Bax, and caspase-3 in CP-intoxicated rats. In addition, API enhanced hepatic antioxidants and Bcl-2 and boosted the Nrf2 and HO-1 mRNA abundance and protein. In conclusion, API is effective in preventing CP hepatotoxicity by attenuating oxidative stress, the inflammatory response, and apoptosis. The hepatoprotective efficacy of API was associated with the upregulation of Nrf2/HO-1 signaling.

8.
Front Pharmacol ; 13: 916732, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35712704

RESUMO

Gentamicin (GEN) is a bactericidal aminoglycoside known to cause nephrotoxicity. Formononetin (FN) is a potent flavonoid that exhibits numerous promising pharmacological activities. In this study, we have assessed the nephroprotective efficacy of FN against GEN-induced renal injury in rats. Rats were orally administered with FN (60 mg/kg/day, for 2 weeks) and were co-treated with intraperitoneal (i.p.) injection of GEN (100 mg/kg/day) during the days 8-14. GEN-treated rats demonstrated increased urea and creatinine levels in serum associated with marked histopathological changes in the kidney. Malondialdehyde (MDA) and protein carbonyl contents were elevated, whereas glutathione concentration and catalase and superoxide dismutase activities were lowered in GEN-administered rats. The FN largely prevented tissue damage, attenuated renal function, reduced MDA and protein carbonyl, and enhanced antioxidant capacity in the kidney of GEN-administrated animals. The kidney of GEN-treated rats demonstrated elevated Bax and caspase-3 protein expression, accompanied by lowered Bcl-2 protein expression, an effect that FN attenuated. Moreover, FN treatment caused upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) expression in renal tissue of GEN-intoxicated animals. Collectively, FN protects against GEN-caused renal damage via exhibiting antioxidant, anti-inflammatory, and antiapoptotic activities and augmenting Nrf2 signaling, suggesting FN as a promising agent for preventing drug-induced organ damage.

9.
Environ Sci Pollut Res Int ; 29(42): 63520-63532, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35461413

RESUMO

Hyperuricemia represents a risk factor for the progression of chronic kidney disease. Oxidative stress and inflammation are implicated in the mechanisms underlying hyperuricemia-mediated kidney injury. Monolluma quadrangula possesses several beneficial effects; however, its effect on hyperuricemia has not been investigated. This study evaluated the renoprotective and xanthine oxidase (XO) inhibitory activity of M. quadrangula in hyperuricemic rats. Phytochemical investigation revealed the presence of six known flavonoid isolated for the first time from this species. The rats received M. quadrangula extract (MQE) and potassium oxonate (PO) for 7 days. In vitro assays showed the radical scavenging and XO inhibitory activities of MQE, and in silico molecular docking revealed the inhibitory activity of the isolated flavonoids towards XO. Hyperuricemic rats showed elevated serum uric acid, creatinine, urea, and XO activity, and renal pro-inflammatory cytokines, MDA and NO, and decreased GSH, SOD, and catalase. MQE ameliorated serum uric acid, urea, creatinine, and XO activity, and renal pro-inflammatory cytokines. In addition, MQE attenuated renal oxidative stress, enhanced antioxidants, downregulated URAT-1, and GLUT-9 and upregulated OAT-1 in PO-induced rats. In conclusion, M. quadrangula attenuated hyperuricemia and kidney impairment by suppressing XO activity, oxidative stress and inflammation, and modulating urate transporters.


Assuntos
Hiperuricemia , Animais , Catalase , Creatinina , Citocinas , Flavonoides/toxicidade , Hiperuricemia/induzido quimicamente , Inflamação , Rim , Simulação de Acoplamento Molecular , Ácido Oxônico , Extratos Vegetais/farmacologia , Ratos , Superóxido Dismutase , Ureia/farmacologia , Ácido Úrico , Xantina Oxidase
10.
Biomed Pharmacother ; 149: 112900, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35378502

RESUMO

The role of oxidative injury and inflammatory response in cardiovascular diseases and heart failure has been well-acknowledged. This study evaluated the protective effect of umbelliferone (UMB), a coumarin with promising radical scavenging and anti-inflammatory activities, on myocardial injury induced by isoproterenol (ISO) in rats. Rats received 50 mg/kg UMB orally for 14 days and 85 mg/kg ISO twice at an interval of 24 h. Administration of ISO elevated serum troponin I, creatine kinase-MB and lactate dehydrogenase, and caused histopathological alterations, including degeneration, fatty vacuolation, myolysis, and atrophy of myocardial fibers. Malondialdehyde (MDA), nitric oxide (NO), nuclear factor-kappaB (NF-κB) p65, tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1ß were increased, whereas reduced glutathione (GSH), superoxide dismutase (SOD), and catalase were decreased in ISO-administered rats. UMB effectively ameliorated myocardial injury, alleviated cardiac function markers, MDA, NO, NF-κB p65, and the inflammatory mediators, and enhanced cellular antioxidants. Bax, caspase-3, and 8-OHdG were decreased, and Bcl-2 was increased in ISO-administered rats treated with UMB. In addition, UMB upregulated nuclear factor-erythroid factor 2-related factor 2 (Nrf2) and heme oxygenase (HO)-1 in the heart of ISO-administered rats. In conclusion, UMB can protect the myocardium from oxidative injury, inflammatory response, and cell death induced by ISO by upregulating Nrf2/HO-1 signaling and antioxidants.


Assuntos
Antioxidantes , Fator 2 Relacionado a NF-E2 , Umbeliferonas , Animais , Ratos , Antioxidantes/metabolismo , Morte Celular , Inflamação/metabolismo , Isoproterenol/efeitos adversos , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , Umbeliferonas/farmacologia , Umbeliferonas/uso terapêutico
11.
Phytomedicine ; 96: 153817, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34782204

RESUMO

BACKGROUND: Despite the significant advances in diagnosis and treatment, breast cancer remains the most common malignancy and the second cause of death in women. Increasingly, preclinical evidence has suggested aryl hydrocarbon receptor (Ahr), a ligand activated transcription factor, a promising therapeutic target in breast cancer. PURPOSE: This study aims at screening a number of phenolic compounds to identify an Ahr ligand with suppressive effects on human breast cancer. METHODS: Potential interactions between Ahr and phenolic compounds were predicted in silico, and physical interaction was examined by ligand competitive binding in vitro. The MDA-MB-231 and T47D breast cancer cell lines were used to examine the expression of Ahr downstream genes and progression of breast cancer cells in vitro. Binding of Ahr/Ahr nuclear transporter (Arnt) complex to the xenobiotic-responsive element (XRE)-box was examined by DNA-protein interaction (DPI)-ELISA, promoter activity was assessed using luciferase reporter system, and RNA interreference was carried out using electroporation. The real-time PCR and/or immunoblotting were used to quantify gene expressions. Tumor growth in vivo was assessed using a murine orthotopic model. RESULTS: A combined computational modeling and in vitro approaches identified gallic acid (GA) as an Ahr ligand with agonistic properties. It induced binding of Ahr/Arnt to the XRE-box, enhanced the promoter activity and expression of Ahr downstream genes including cytochrome P450 1A1 (CYP1A1), and SRY-related HMG-box4 (SOX4)-targeting miR-212/132 cluster and miR-335 in both MDA-MB-231 and T47D cells. GA increased apoptosis while decreased proliferation, migration and invasion capacities of breast cancer cells in an Ahr-dependent fashion. Furthermore, it reduced the levels of B-cell lymphoma 2 (BCL-2), cyclooxygenase-2 (COX-2) and SOX4, while selectively increased that of tumor protein 53 (P53), in an Ahr-dependent and -independent fashions. In an in vivo orthotopic model, GA activated Ahr signaling and reduced the growth of breast cancer cells. CONCLUSION: We identified GA as an Ahr phenolic ligand, and provided evidence on the role of Ahr in mediating its anti-breast cancer effects, indicating that GA, and possibly other phenolic compounds, have important therapeutic implications in human breast cancer through activation of Ahr signaling.


Assuntos
Neoplasias da Mama , MicroRNAs , Animais , Apoptose , Neoplasias da Mama/tratamento farmacológico , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Feminino , Ácido Gálico/farmacologia , Humanos , Camundongos , Receptores de Hidrocarboneto Arílico/metabolismo , Fatores de Transcrição SOXC , Transdução de Sinais
12.
Life Sci ; 286: 120071, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34688692

RESUMO

Nephrotoxicity is a major complication that limits the therapeutic application of cisplatin (CIS). Oxidative stress and inflammation are implicated in CIS-induced acute kidney injury (AKI) and apoptotic cell death. Punicalagin (PUN), a polyphenol in pomegranate, possesses promising anti-inflammatory and antioxidant activities, and its beneficial effect against CIS-induced AKI has not been fully elucidated. This investigation evaluated the protective effect of PUN against CIS-induced renal oxidative stress, inflammation and cell death. Rats received PUN (25 and 50 mg/kg) for 10 days and a single injection of CIS at day 7. The results showed increased serum urea and creatinine and several histopathological alterations in the kidney of CIS-intoxicated rats. Renal malondialdehyde (MDA) and nitric oxide (NO) were increased, and reduced glutathione, superoxide dismutase and catalase were declined in rats treated with CIS. PUN effectively ameliorated kidney function and attenuated tissue injury induced by CIS, decreased MDA and NO, and enhanced antioxidant defenses. Additionally, PUN downregulated NF-κB p65, iNOS, TNF-α, IL-6 and IL-1ß in the kidney of rats that received CIS. Bax and caspase-3 were increased, and Bcl-2 was decreased in the kidney of CIS-intoxicated rats, an effect that was reversed by PUN. PUN upregulated Nrf2 expression in the kidney of CIS-intoxicated rats. In conclusion, PUN prevents CIS-induced AKI in rats by attenuating oxidative stress, inflammatory response and apoptosis, and upregulating Nrf2 and antioxidants.


Assuntos
Injúria Renal Aguda/prevenção & controle , Taninos Hidrolisáveis/farmacologia , Rim/patologia , Animais , Apoptose/efeitos dos fármacos , Nitrogênio da Ureia Sanguínea , Catalase/metabolismo , Cisplatino/efeitos adversos , Cisplatino/farmacologia , Glutationa/metabolismo , Taninos Hidrolisáveis/metabolismo , Inflamação/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Masculino , Malondialdeído/metabolismo , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo
13.
J Biochem Mol Toxicol ; 35(11): e22906, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34486204

RESUMO

Oxidative tissue injury and inflammatory responses play major roles in cardiovascular diseases and heart failure. Visnagin (VIS) is a natural bioactive component of Ammi visnaga, with promising radical scavenging and anti-inflammatory activities. This study explored the protective effect of VIS against isoproterenol (ISO)-induced acute myocardial injury and oxidative stress in rats. VIS was supplemented for 14 days, and the rats received ISO (100 mg/kg) twice at an interval of 24 h. ISO-induced myocardial injury was characterized by elevated serum CK-MB, LDH, and troponin-I associated with increased heart weight and several histopathological changes. ISO increased reactive oxygen species (ROS), malondialdehyde (MDA), NF-κB p65, TNF-α, IL-6, and decreased glutathione and antioxidant enzymes in rats' hearts. VIS prevented myocardial injury and ameliorated the cardiac function markers, ROS, MDA, NF-κB p65, and pro-inflammatory cytokines in ISO-intoxicated rats. In addition, VIS decreased Bax mRNA and caspases, and upregulated Nrf2, HO-1, Bcl-2, and PPARγ. Molecular docking simulations revealed the binding method of VIS to NF-κB, Keap1, and PPARγ. In conclusion, VIS protects against ISO-induced acute myocardial injury by attenuating oxidative tissue injury and reducing key inflammatory and apoptosis markers. In vivo and in silico results showed that activation of Nrf2/HO-1 signaling and PPARγ mediates the cardioprotective effect of VIS.


Assuntos
Agonistas Adrenérgicos beta/efeitos adversos , Inflamação/prevenção & controle , Isoproterenol/efeitos adversos , Quelina/farmacologia , Infarto do Miocárdio/prevenção & controle , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Animais , Masculino , Ratos , Ratos Wistar
15.
Biomed Pharmacother ; 138: 111410, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33752930

RESUMO

Cardiovascular complications are the leading cause of morbidity in diabetes. Oxidative stress and inflammation are implicated in the development and progression of diabetic cardiomyopathy (DCM). This study explored the cardioprotective effect of galangin (Gal), a natural flavonoid with radical-scavenging and anti-inflammatory activities, in diabetic rats. An experimental diabetic rat model was achieved by a single injection of 50 mg/kg streptozotocin. Gal (15 mg/kg) was administered daily for six weeks and the samples were then collected. Diabetic rats exhibited hyperglycemia, increased glycosylated hemoglobin, triglycerides and cholesterol levels and reduced serum insulin. Serum troponin I, CK-MB and LDH were increased in diabetic rats. Furthermore, hearts of diabetic rats were characterized by elevated malondialdehyde, protein carbonyl, NF-κB p65, TNF-α, IL-1ß, iNOS, IL-6, Bax, caspase-3 and 8-Oxo-dG, and decreased superoxide dismutase, catalase, reduced GSH, and Bcl-2. Gal ameliorated hyperglycemia, dyslipidemia, and heart function markers, and prevented histopathological alterations in diabetic rats. In addition, Gal attenuated cardiac oxidative injury, inflammation and apoptosis, and boosted antioxidant defenses. In conclusion, Gal has a protective effect on cardiomyopathy by attenuating hyperglycemia, dyslipidemia, oxidative stress and inflammation in diabetic rats.


Assuntos
Apoptose/efeitos dos fármacos , Cardiomiopatias Diabéticas/tratamento farmacológico , Flavonoides/uso terapêutico , Mediadores da Inflamação/antagonistas & inibidores , Estresse Oxidativo/efeitos dos fármacos , Animais , Apoptose/fisiologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Flavonoides/farmacologia , Mediadores da Inflamação/metabolismo , Masculino , Estresse Oxidativo/fisiologia , Ratos , Ratos Wistar
17.
Environ Sci Pollut Res Int ; 27(24): 30118-30132, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32449150

RESUMO

Dyslipidemia is a risk factor for cardiovascular disease, steatohepatitis, and progression of liver disorders. This study investigated the protective effect of farnesol (FAR), a sesquiterpene alcohol, against liver injury in high cholesterol diet (HCD)-fed rats, and its modulatory effect on fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC). HCD was supplemented for 10 weeks, and the rats were concurrently treated with FAR. Rats that received HCD exhibited significant elevation of serum cholesterol, triacylglycerols, LDL and vLDL cholesterol, CRP, and pro-inflammatory cytokines and increased values of the cardiovascular risk indices. Serum transaminases, ALP, LDH and CK-MB, and hepatic lipid peroxidation (LPO), cholesterol, and triacylglycerols were increased in HCD-fed rats. Treatment with FAR greatly ameliorated dyslipidemia and liver function, reduced inflammatory mediators, LPO, and hepatic lipid infiltration and enhanced anti-oxidant defenses. FAR suppressed hepatic FAS, ACC, and SREPB-1c mRNA abundance and FAS activity in HDC-fed rats. In addition, molecular docking simulations pinpointed the binding modes of FAR to the active pocket residues of FAS and ACC. In conclusion, FAR possesses a strong anti-hyperlipidemic/anti-hypercholesterolemic activity mediated through its ability to modulate hepatic FAS, ACC, and SREPB-1c. FAR prevented oxidative stress, inflammation, and liver injury induced by HCD. Thus, FAR may represent a promising lipid-lowering agent that can protect against dyslipidemia and its linked metabolic deregulations.


Assuntos
Acetil-CoA Carboxilase , Farneseno Álcool , Animais , Colesterol , Ácido Graxo Sintases , Fígado , Simulação de Acoplamento Molecular , Estresse Oxidativo , Ratos , Triglicerídeos
18.
Sci Total Environ ; 703: 134399, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31757531

RESUMO

The adverse effect of increased environmental temperature during summer season on avian industry has received great global concern. High temperature leads to severe economic loss in poultry production, because it is considered as valuable stress factor. Several practical methods were used to alleviate the adverse impact of increased temperature; among them were dietary modifications. So, several types of herbs are supplemented to reduce the deleterious influences of thermal stress altitudes in various animals, and even to prevent their adverse impacts. Therefore, sustainable supports for dietary modification based on herbs supplementations are largely needed, particularly when consider the additional advantages of herbs such as availability, actual efficiency, low cost, as well as their free from residual impact and antibiotic resistance. Numerous types of herbs were concluded to their efficient properties by poultry breeders to overcome a variety of the harmful effects of high ambient temperature. The present article deliberates the different practical applications of several members of the traditional herbal wealth to improve the general health state of poultry particularly as thermoregulatory and immunomodulatory agents, and for countering the heat stress-associated immunosuppressive effects. Additionally, the antioxidant activity of herbal growth promoters and their influence on improvement of production performances were a special aim of this review. The reported information will be helpful for improvement of general production and health status of birds reared under the heat stress via enhancement of immune response and stress tolerance, and popularizes usage of herbs amongst poultry producers.


Assuntos
Aves Domésticas , Animais , Suplementos Nutricionais , Transtornos de Estresse por Calor , Resposta ao Choque Térmico , Temperatura Alta
19.
Sci Total Environ ; 701: 134879, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31734488

RESUMO

Lead acetate (Pb) is an oldest and widespread environmental toxicant that led to cumulative injury in humans and all living organisms through induction of oxidative stress. Spirulina platensis (SP) is a cyanobacteria with strong antioxidant, anti-inflammatory, and immune stimulatory effects. In this study, the ameliorative effect of SP was evaluated against the dietary sub chronic lead toxicities in rabbits. A total number of 75 male New Zealand rabbits were allocated randomly into 5 groups; the first group feed on basal diet alone and served as control group, the second group feed on basal diet + 100 mg Pb /kg diet, the third, fourth, and the fifth groups feed on basal diet + 100 mg Pb /kg diet + SP (0.5, 1, or 1.5 g/kg diet; respectively), the experiment was extended for 8 weeks. Results revealed a significant improvement in some of growth parameters like final body weight and daily weight gain, blood parameters in rabbits treated with SP at level 1.5 g/kg diet followed by those receiving SP 1 g/kg diet. However, a significant decrease in blood parameters, liver function, renal parameters, lipid profiles, oxidative parameters (malondialdehyde and protein carbonyl), heart indices (creatine phosphokinase, creatine kinase-muscle/brain, lactate dehydrogenase), total Pb residues in muscles, and area percent of nuclear factor kappa b immune expression were reported in groups supplemented with different levels of SP. Pathologic analysis of liver, kidneys, and heart revealed moderate to severe degenerative and necrotic changes in Pb- exposed rabbits, which is ameliorated with supplementation of SP in different levels. Conclusively, dietary supplementation of SP at different levels attenuated the cumulative effect of lead in rabbits in dose-dependent manner; this attenuation may be attributed to its anti-oxidative, anti-inflammatory, as well as its immune stimulant effect.


Assuntos
Antioxidantes/metabolismo , Poluentes Ambientais/toxicidade , Chumbo/toxicidade , Spirulina , Ração Animal , Animais , Anti-Inflamatórios/metabolismo , Suplementos Nutricionais , Masculino , Coelhos
20.
Antioxidants (Basel) ; 8(10)2019 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-31561418

RESUMO

Acute kidney injury (AKI) is a serious complication of methotrexate (MTX). This study explored the protective effect of the isoflavone formononetin (FN) against MTX nephrotoxicity with an emphasis on oxidative stress, inflammation, and nuclear factor (erythroid-derived 2)-like 2/heme oxygenase 1 (Nrf2/HO-1) signaling. Rats received FN (10, 20, and 40 mg/kg) for 10 days and a single dose of MTX on day 7. MTX induced kidney injury was characterized by increased serum creatinine and urea, kidney injury molecule-1 (Kim-1), and several histological alterations. FN ameliorated kidney function and inhibited the renal tissue injury induced by MTX. Reactive oxygen species (ROS), lipid peroxidation (LPO), nitric oxide, and 8-Oxo-2'-deoxyguanosine were increased, whereas antioxidant defenses were diminished in the kidney of MTX-administered rats. In addition, MTX upregulated renal iNOS, COX-2, TNF-α, IL-1ß, Bax, caspase-9, and caspase-3, and decreased Bcl-2, Nrf2, and HO-1. FN suppressed oxidative stress, LPO, DNA damage, iNOS, COX-2, proinflammatory cytokines, and apoptosis, and boosted Bcl-2, antioxidants, and Nrf2/HO-1 signaling in MTX-administered rats. In conclusion, FN prevents MTX-induced AKI by activating Nrf2/HO-1 signaling and attenuates oxidative damage and inflammation. Thus, FN may represent an effective adjuvant that can prevent MTX nephrotoxicity, pending further mechanistic studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...